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Phase diagram of symmetric binary mixtures at equimolar and nonequimolar concentrations:
A systematic investigation
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We consider symmetric binary mixtures consisting of spherical particles with equal diameters interacting via
a hard-core plus attractive tail potential with strengthse i j , i , j 51,2, such thate115e22.e12. The phase
diagram of the system at all densities and concentrations is investigated as a function of the unlike-to-like
interaction ratiod5e12/e11 by means of the hierarchical reference theory. The results are related to those of
previous investigations performed at equimolar concentration, as well as to the topology of the mean-field
critical lines. Asd is increased in the interval 0,d,1, we find first a regime where the phase diagram at equal
species concentration displays a tricritical point, then one where both a tricritical and a liquid-vapor critical
point are present. We did not find any clear evidence of the critical end point topology predicted by mean-field
theory asd approaches 1, at least up tod50.8, which is the largest value ofd investigated here. Particular
attention was paid to the description of the critical-plus-tricritical point regime in the whole density-
concentration plane. In this situation, the phase diagram shows, in a certain temperature interval, a coexistence
region that encloses an island of homogeneous, one-phase fluid.

DOI: 10.1103/PhysRevE.67.046116 PACS number~s!: 64.70.Fx, 64.70.Ja, 64.60.Cn, 64.60.Fr
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I. INTRODUCTION

A major difference between the phase behavior of o
component fluids and binary mixtures is that, even if o
considers just simple systems with a spherically symme
Lennard-Jones-~LJ! like interaction profile, the qualitative
features of the phase diagram of mixtures depend very
sitively on the parameters of the microscopic potential. If
interaction between a particle of speciesi and a particle of
speciesj is modeled as the sum of a hard-core repulsion
a longer-ranged attractive tail, the relevant parameters are
hard-sphere diameterss i j and the strengthse i j of the attrac-
tive contributions,i , j 51,2. This parameter space is dras
cally reduced by focusing on a particular class of syste
generally referred to assymmetric mixtures, such thats11

5s225s125s, e115e225e. Since the quantitiess and e
can be included into the definition of the temperatureT and
number densitiesr i by introducing standard reduced uni
r i* 5r is

3, T* 5kBT/e, kB being the Boltzmann constant,
follows that the only parameter affecting the phase diagr
is the ratio of the interaction strengths between unlike a
like speciesd5e12/e.

Clearly, symmetric mixtures appear quite artificial wh
considered as a model of real binary fluids. In fact, some
1063-651X/2003/67~4!/046116~17!/$20.00 67 0461
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the features of their phase behavior hinge on the invaria
with respect to the exchange of the two species, and are
found in the phase diagram of real mixtures. As has alre
been observed@1#, symmetric mixtures are better seen as
model for a one-component fluid, whose particles have b
endowed with a two-state, spinlike variable in addition
their translational degrees of freedom, so that their mut
interaction depends both on their relative position and
their ‘‘internal’’ state, namely, whether the interacting pa
ticles belong to the same species or not. As such, this m
mixture is closely related to other models of dipolar@2,3# and
magnetic@4–7# fluids, especially Ising-spin fluids@8–10#. In
these systems, the phase behavior results from the inter
between the liquid-vapor phase separation and the additi
transition, e.g., para-ferromagnetic, associated to the spin
degrees of freedom. In symmetric mixtures, the latter co
sponds to the mixing-demixing transition.

Because of the relative simplicity of this model compar
to a generic binary mixture and of the possibility of gener
ing the whole spectrum of phase diagrams by acting on
one parameter, symmetric mixtures have been widely stud
both by mean-field theory@1# and by numerical simulations
@1,11–16#. A situation which has been given special attenti
is that of equal species concentrationx5r2 /(r11r2)
51/2. In this case, accurate numerical simulations@1# have
qualitatively confirmed the mean-field scenario for the ph
©2003 The American Physical Society16-1
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diagram as the parameterd is varied in the interval 0,d
,1. This will be considered in detail in Secs. III and I
Here, we just recall that the mean-field phase diagram
equal species concentration presents both a first-order c
istence boundary which separates a low-density fluid from
high-density one, and a line~the so-calledl line! of mixing-
demixing critical points. Beyond thel line, the fluid actually
consists of two demixed fluids in equal amounts, one a

certain concentrationx̄, and the other at concentration

2 x̄, so that the overall concentration of the two species
mains the same. For large enoughd (d1,d,1 with d1

50.708 according to the mean-field result@1#! the coexist-
ence curve ends into a liquid-vapor critical point, while thel
line intersects the coexistence curve at a point of first-or
transition, thereby terminating into a critical end point.
smalld (0,d,d2 with d250.605 in mean field@1#!, on the
other hand, the point at which the coexistence curve m
the l line coincides with its critical point. The latter is the
referred to as a tricritical point, since on approaching t
point from low temperatures, one observes the simultane
coalescence of three phases, namely, the low-density v
and the two demixed high-density fluids. Finally, in a narro
interval of d valuesd2,d,d1 intermediate between thos
corresponding to the two topologies described above,
has the occurrence of both a liquid-vapor critical point an
tricritical point.

Despite the qualitative agreement between the mean-
scenario and the simulation results, there are still sev
points that deserve further investigation. First, mean-fi
theory and simulations show considerable quantitative
crepancies, which concern both the position of the criti
loci and the values ofd at which the changes in the topolog
of the phase diagram occur. This is in itself not surprising
mean-field theory cannot be expected to be quantitativ
very accurate. Therefore, one would like to go beyond it
means of a theoretical treatment which includes fluctuati
in the order parameter of the transition, be it of the liqu
vapor or mixing-demixing kind. Two relevant issues in th
respect are whether the mean-field scenario is qualitati
recovered even after fluctuations have been taken into
count, and which is the extent of the quantitative chan
involved. Moreover, the case of equal species concentra
corresponds just to a certain plane, albeit undoubtedly
special interest, of the space of thermodynamic states. S
lation studies of the phase diagram have indeed been
formed also at fixed densityr and variable concentrationx
@14,16#, but mapping the phase diagram in the whole th
modynamic space for different values of the parameted
would require a very large number of simulation runs, a
therefore hardly appears as a viable strategy in view of
computer time required. It is then tempting to resort to the
in order to explore the phase diagram at general density
concentration and find out how it changes by changingd, so
as to see what the phase diagrams corresponding to the
regimes outlined above look like, as one moves away fr
the x51/2 plane.

We aim to address these topics in the present work
means of the hierarchical reference theory~HRT! of binary
04611
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fluids. This theory has already been successfully applied
the description of the critical behavior@17#, crossover phe-
nomena@17,18#, and phase diagram@19# of simple fluid mix-
tures. Few results for the phase behavior of symmetric m
tures have also been reported@19,20#, but a systematic
investigation of this system by HRT has not been underta
yet. In our opinion, HRT is especially well suited for such
study, with particular regard for the tasks stated above
fact, the aim of this approach is determining how the Hel
holtz free energy of the mixture is affected by the introdu
tion of density and concentration fluctuations. This
achieved via a renormalization-group-~RG! like procedure,
where the long-wavelength Fourier components of the
croscopic interaction are gradually introduced into the ham
tonian of the mixture. Any intermediate stage of this proce
such that only Fourier components with wave vectors
ceeding a certain cutoffQ have been taken into accoun
physically corresponds to suppressing fluctuations on
length scaleL.1/Q. Long-range fluctuations are recovere
in the limit Q→0, when the free energy of the fully inter
acting system is obtained, while the mean-field free ene
enters as the initial condition atQ5`. The main advantage
of HRT over other liquid-state theories is that it embod
several features of the RG description of critical phenom
in a treatment based on the microscopic Hamiltonian of
fluid. These include scaling, nontrivial critical exponen
and the correspondence between universality classes and
ferent fixed points of the RG flow@17#. A fact of particular
relevance for the investigation pursued here is that the in
sion of long-range fluctuations has the effect of preserv
the correct convexity of the free energy in the whole therm
dynamic space. Whenever phase coexistence occurs,
does not find any domain of instability as in the mean-fie
approximation, and the conditions of thermodynamic eq
librium between the phases at coexistence are enforced
the theory itself. At each given temperature, the coexiste
region is then immediately recovered as the locus in
density-concentration plane where the chemical potentia
each component is constant along the lines of fixed press
with no need of imposing this conditiona posteriori by a
Maxwell construction. For binary mixtures, the latter prov
to be quite cumbersome already at the mean-field level,
is much more so for more sophisticated integral-equat
theories, in which the occurrence of phase separation ge
ally entails the presence of some forbidden domain, wh
the theory cannot be solved at all. Therefore, the ability
straightforwardly mapping the phase diagram is a valua
asset of HRT. This is especially true in the present c
where the topology of the phase diagram is very sensitive
changes ind, while at the same time, as will be seen in t
following, the features that allow one to discriminate b
tween different topologies are often detectable only in a n
row window of the thermodynamic space. Because of
lack of a solution defined for every (T,r,x) state, pinpoint-
ing all these features by conventional integral-equation th
ries would undoubtedly prove extremely difficult, perha
even impossible.

In this work, we have considered symmetric mixtures
additive hard spheres interacting via an attractive Yuka
tail potentialwi j (r )52se i j e

2z(r /s21)/r , wherer is the in-
terparticle distance andz is the inverse range of the interac
6-2
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tion, which has been fixed to the valuez51.8 for both like
and unlike species. This hard-core Yukawa~HCY! form has
been preferred to the square-well potential used in Ref.@1#.
The latter lends itself well to simulation, but the very slow
decaying behavior of its Fourier transform makes it som
what tedious to use in HRT. The HCY potential has alrea
been adopted in a number of studies of symmetric mixtu
based on the mean spherical approximation~MSA! @21#, the
optimized random phase approximation~ORPA! @22#, and
the self-consistent Ornstein-Zernike approximati
~SCOZA! @23#, all of which yielded for the phase diagram
equimolar concentration the same behavior found in me
field theory. The scenario that comes out of our investigat
by HRT agrees qualitatively with the mean-field one in p
dicting that, asd is increased, the phase diagram at equim
lar concentration exhibits first a tricritical point, and subs
quently both a tricritical and a liquid-vapor critical poin
However, we did not find any clear evidence of the occ
rence of the mixing-demixing critical end point given b
mean-field theory asd approaches 1, at least up tod50.8,
above which further investigation is hindered by the fin
resolution of the density grid used in our numerical calcu
tion. Besides the scenario sketched above at equal sp
concentration, other interesting features of the phase diag
emerge as we move off thex51/2 axis. For instance, th
intermediate regime where both a critical and a tricritic
point are found forx51/2 is marked in ther-x plane by a
coexistence region which in a certain temperature inte
contains a ‘‘hole’’ or ‘‘island’’ of homogeneous, mixed fluid
Double critical points and, for a certain value ofd, tricritical
points are also observed for unequal species concentrat

The paper is structured as follows: the HRT for a bina
fluid is described in Sec. II. Mean-field theory is recover
within this approach as a zeroth-order approximation, a
the mean-field results for the critical lines of a symmet
mixture as the parameterd is varied in the interval 0,d
,1 are shown in Sec. III. The HRT phase diagram for d
ferent values ofd is discussed and compared with the mea
field predictions in Sec. IV. Finally, in Sec. V, we summari
our findings and draw our conclusions.

II. HRT EQUATIONS

Here, we briefly review the HRT approach for a bina
fluid. A more detailed derivation can be found in previo
works @17,19,24#.

We consider a model mixture consisting of particles
two species interacting via a two-body spherically symme
potentialv i j (r ), where the indicesi, j label the particle spe
cies. The derivations presented in this section do not hi
on the fact that one is dealing with a symmetric system s
that v11(r )5v22(r ), so they are equally valid for nonsym
metric systems. We assume thatv i j (r ) can be split as the
sum of a singular contributionv i j

R(r ) which accounts for the
short-range repulsion between the particles, and a lon
ranged, smooth attractive tailwi j (r ) which may induce fluid-
fluid phase separation. The properties of the mixture inter
ing via the repulsive potentialv i j

R(r ) alone are considered a
known, so that it acts as a ‘‘reference’’ or unperturbed s
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tem. For a hard-core plus tail potential, the natural choice
the reference system is just a binary mixture of additive h
spheres, which can be described by the Mansoori-Carna
Starling-Leland equation of state@25# and the corresponding
Verlet-Weis parametrization for the two-body correlatio
@26,27#. We remark that here we will not be concerned w
a possible demixing transition occurring in the hard-sph
mixture, since such a transition may come along only a
consequence of depletion interactions when the particles
fer widely in size. In the present case of equisized partic
the reference system reduces to a one-component h
sphere fluid, and all the fluid-fluid transitions displayed
the system are necessarily due to the attractive perturba
wi j (r ). The HRT differs from the conventional liquid-stat
approaches in the way this perturbation is dealt with. In or
to accurately describe the long-range fluctuations that
important in criticality and phase separation, the attract
part of the interaction is switched on gradually by introdu
ing a Q systemwith a modified interactionv i j

Q(r )5v i j
R(r )

1wi j
Q(r ), where wi j

Q(r ) is defined in such a way that it

Fourier transformw̃i j
Q(k) coincides with that of the origina

attractive potentialw̃i j (k) for k.Q, and vanishes fork
,Q. Inspection of the diagrammatic series of the Helmho
free energy of the mixture in terms of the perturbationwi j (r )
and the correlation functions of the reference system sh
that introducing such an infrared cutoff in the interaction
physically equivalent to inhibiting fluctuations with chara
teristic lengthsL.1/Q. If Q is made to evolve fromQ
5`, the Q systems evolve from the reference system
acquiring fluctuations of longer and longer wavelengths. T
fully interacting system is recovered as theQ→0 limit of
such a process. Only in this limit true long-range correlatio
are allowed to develop in the fluid. The equation for t
corresponding evolution of the Helmholtz free energyAQ of
theQ systems can be determined exactly and is related to
attractive perturbation in momentum spaceF i j (k)5

2bw̃i j (k) whereb51/(kBT), and to the direct correlation
function of theQ system in momentum spaceci j

Q(k). We
recall that the direct correlation function is related to t
structure factor of the fluid by the Ornstein-Zernike relatio
If we denote bycQ(k) the 232 symmetric matrix with ele-
mentsci j

Q(k), for a binary mixture this relation reads

@cQ
21~k!# i j 52Ar ir jSi j

Q~k!, ~1!

wherecQ
21(k) is the inverse matrix ofcQ(k) andSi j

Q(k) is the
partial structure factor of theQ system. Here, unlike in the
convention commonly adopted in liquid-state theory,ci j

Q(k)
contains its ideal-gas contribution2d i j /r i . The evolution
equation for the Helmholtz free energy is most easily form
lated in terms of a modified free energyAQ and direct cor-
relation functionCQ(k) defined as

AQ52
bAQ

V
1

1

2 (
i , j 51

2

r ir j@F i j ~k50!2F i j
Q~k50!#

2
1

2 (
i 51

2

r iE d3k

~2p!3
@F i i ~k!2F i i

Q~k!#, ~2!
6-3
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C i j
Q~k!5ci j

Q~k!1F i j ~k!2F i j
Q~k!. ~3!

The HRT equation forAQ is then

]AQ

]Q
52

Q2

4p2
ln$det@12C Q

21~Q!F~Q!#%, ~4!

where againF(Q) andC Q
21(Q) are 232 symmetric matri-

ces, the latter being the inverse of the matrixCQ(Q), and1 is
the unit matrix. We note that forQ→0, i.e., at the end of the
evolution process,FQ(k) andF(k) coincide, so that in this
limit the modified quantitiesAQ , CQ yield, respectively, the
true free energy and direct correlation function of the fu
interacting system. ForQ5` instead one hasFQ(k)[0,
and AQ and CQ are nothing but the mean-field free ener
and the random-phase approximation~RPA! direct correla-
tion function in the presence of the full perturbing potent
F(k). These play the role of the initial conditions of th
evolution equation~4!, which then describes how the mea
field estimate for the free energy is affected by the inclus
of fluctuations. This equation is manifestly not closed, sin
the evolution of the free energyAQ is related to the matrix of
the direct correlation functionCQ(k), which is itself un-
known. In fact, Eq.~4! is just the first equation of an infinite
hierarchy for the direct correlation functions of increasi
order: for instance, the evolution ofCQ(k) is related to the
three- and four-body direct correlation functions in Four
space@24#. A point of crucial importance in order to imple
ment a viable HRT scheme consists then in supplemen
Eq. ~4! with some closure relation involvingCQ(k). Here, as
well as in the previous applications of HRT, we have n
resorted to the higher-order equations of the hierarchy.
stead, we have adopted forCQ(k) an approximate form in-
spired by standard perturbative liquid-state theories:

C i j
Q~k!5ci j

HS~k!1n i j
QF i j ~k!, ~5!

where ci j
HS(k) is the Fourier transform of the partial dire

correlation function of the hard-sphere reference syst
which has been represented by the above-mentioned Ve
Weis parametrization. The functional form of Eq.~5! for the
direct correlation function is similar to that of the wide
used RPA, which is recovered forn i j

Q51. In particular, both
of them rely on the Ornstein-Zernike ansatz, i.e., the dir
correlation function has always the same range as the po
tial, so thatC i j

Q(k) is always analytic ink, including at the
critical points of the system, where the real direct correlat
function is instead expected to be nonanalytic forQ→0.
However, unlike in the RPA, the amplituden i j

Q of the pertur-
bation is regarded as an unknown quantity, to be determ
in such a way that eachQ system satisfies the compressib
ity sum rule. In a one-component fluid, this relates the i
thermal compressibility to the zero-wave vector value of
structure factor, or equivalently of the direct correlation fun
tion in momentum space. Such a rule is readily generali
to binary systems, and in terms of the modified quantit
AQ , CQ(k) it reads
04611
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C i j
Q~k50!5

]2AQ

]r i]r j
, i , j 51,2. ~6!

By determiningn i j
Q so that Eq.~6! is satisfied, one immedi-

ately finds from Eq.~5!

C i j
Q~k!5ci j

HS~k!1F ]2AQ

]r i]r j
2ci j

HS~k50!Gw i j ~k!, ~7!

where we have setw i j (k)5F i j (k)/F i j (k50). Equation~7!
ensures that the Helmholtz free energy obtained by inte
tion of Eq. ~4! is consistent with the compressibility route
the thermodynamics given by Eq.~6!. This thermodynamic
consistency condition plays a key role in the implementat
of HRT. In fact, by substitutingC i j

Q(k) as given by Eq.~7!
into the HRT equation~4!, a closed partial differential equa
tion ~PDE! for AQ is obtained, which involves both the firs
partial derivative ofAQ with respect toQ, and its second
partial derivatives with respect to the densitiesr1 , r2. In
order to integrate this equation numerically, we found it m
convenient to cast it into a form where the partial derivativ
of the unknown function appear only outside some ‘‘coe
cients’’ that may depend both on the independent variab
r1 , r2 , Q, and on the unknown function itself, but do n
contain its derivatives. This allows us to take advantage
finite-difference schemes especially devised for equation
such aquasilinear form, which combine robustness with
moderate computational cost@28#. Both of these are very
important requirements in our case. In fact, in order to d
with the divergence of the compressibility at criticality an
phase coexistence, one has to resort to a very stable a
rithm, while on the other hand for a diffusive PDE in thre
independent variables like the one considered here, the
mension of the vectors generated by the discretization p
cedure becomes rapidly very large even for a relativ
coarse density stepDr. Hence, we have to use a solutio
scheme which is not too demanding computationally to p
vent computer time from increasing beyond control.

The method we adopted to rewrite Eq.~4! supplemented
by the closure relation~7! in quasilinear form has alread
been illustrated in Ref.@19#, to which we refer the reader fo
details. Here we recall that, instead ofAQ , we use as un-
known function the quantity

U5 ln$det@12C Q
21~Q!F~Q!#%. ~8!

This is found to satisfy a quasilinear PDE of the form

eU
]U

]Q
5K

]2U

]r1
2

1L
]2U

]r1]r2
1M

]2U

]r2
2

1N, ~9!

whose ‘‘coefficients’’K, L, M, N, which will not be reported
here, depend on the variablesr1 , r2 , Q both explicitly and
implicitly via a set of three auxiliary variables. These can
identified either with the eigenvaluesl1 , l2 of the symmet-
ric matrix CQ(Q) and the anglea of the rotation that casts
CQ(Q) into diagonal form, or with the corresponding qua
tities L1 , L2 , u for the symmetric matrix of element
]2AQ /]r i]r j . As discussed in Ref.@19#, the use of one or
6-4
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the other set of auxiliary variables is dictated by the differ
behavior of the interaction in the high- and low-Q region. At
high Q, where the Fourier transform of the attractive pert
bationw i j (Q) typically displays oscillations, thereby vanish
ing for certainQ values, it is better to adopt as auxiliar
quantitiesL1 , L2 , u. At small Q instead, when most of the
attractive interaction has been included into the system
phase coexistence may occur, the setl1 , l2 , a is the more
appropriate choice. In both cases, the derivative of eac
the auxilary variables with respect toQ can be expressed i
terms of the variables themselves and the partial derivat
of U with respect tor1 , r2. At any givenQ, the resulting
equations are used to updatel1 , l2 , a ~or L1 , L2 , u),
while the PDE~9! is used to updateU. Since the matrix
CQ(Q) that appears in Eq.~8! can be expressed either byl1 ,
l2 , a or, via Eq.~7!, L1 , L2 , u, it follows that U and the
set of the three auxiliary variables are not mutually indep
dent. The relation betweenU and the auxiliary variables is
used throughout the integration procedure as a check o
accuracy of the calculation.

In order to perform the numerical integration, we found
convenient to replace the independent variablesr1 , r2 with
the related variablesj5(r11r2)s3, x5r2 /(r11r2). At
any givenQ, U is then defined in the rectangular domain
<x<1, 0<j<jmax, where the high-density boundaryjmax
was chosen equal to 1. At the beginning of the evolut
process, i.e., for suitably largeQ, the matrixCQ(k) can be
identified with the RPA expression for the direct correlati
function which, as said above, is obtained from Eq.~3! for
Q5`. This gives the initial condition forU via Eq.~8!. The
boundary conditions forU needed for the integration of Eq
~9! are determined as follows: forj50 the diagonal ele-
ments of the matrixCQ(Q) diverge because of the ideal-ga
contribution to the direct correlation function2d i j /r i , so
thatU(j50,x) vanishes identically. Forx50 andx51 only
one of the two species is present. The corresponding bo
ary conditions are then given by the solution of the HR
equation for a pure fluid, which can be integrated nume
cally by specializing the procedure sketched above to a o
component system. The high-density boundary condition
j5jmax is nontrivial because, unlike in pure fluids, we mu
allow the occurrence of phase transitions even at high d
sity. As a consequence, we have to rule out the possibilit
using for U at j5jmax a simple approximation such as th
RPA, as already done for the one-component case, bec
such a form would behave unphysically in the coexiste
region. In general, we expect that at high density the co
pressibility of the fluid will be small, and concentration flu
tuations will become more important than density ones. T
corresponds to the transition becoming less liquid vapor
more mixing demixing in character. For the symmetric m
tures considered here, such an expectation holds rigorou
in fact, because of the special symmetry of the model,
high-density transition are of pure mixing-demixing type. A
a consequence, we expectU to be much more sensitive to
change in concentration than in density. Accordingly, forj
5jmax the partial derivatives ofU along j in Eq. ~9! have
been disregarded with respect to those along the conju
directionz5(r12r2)s3. By switching from the variablesj,
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z back to the variablesj, x, we obtain a PDE in the variable
Q, x on the boundaryj5jmax, whose solution yields the
high-density boundary condition of Eq.~9!.

The numerical integration of Eq.~9! supplemented by the
equations for the evolution of the auxilary variables was p
formed on a grid in the (j,x) plane containing 1503150
mesh points. The integration with respect to the variableQ
was carried out by settingQ5Q0e2t, t>0, where the initial
value ofQ corresponding tot50 was typically fixed atQ0
530 s21. The variablet was discretized using a stepDt
51023 and the iteration int went on until convergence in th
quantity U was achieved outside the coexistence region.
low temperature this requirement can be satisfied forQ
,1024 s21.

III. MEAN-FIELD CRITICAL LINES

The phase diagrams of binary mixtures are usually cla
fied according to the topology of their critical lines@29,30#.
We then begin the discussion of the phase behavior of
symmetric mixtures as a function of the interaction para
eterd by presenting the different shapes of the critical lin
that are predicted by the mean-field approximation. We w
then consider the HRT results for the phase diagram
elucidate the relationship between the critical loci and
behavior of the coexistence domains on changing the t
perature. In doing so, we will also be in a position to co
pare the mean-field and HRT predictions.

As observed above, the mean-field~MF! approximation
enters the HRT as the initial condition atQ5`, when no
fluctuations have been introduced into the system:

2
bAMF

V
5AQ5`52

bAHS

V
1

1

2 (
i , j 51

2

r ir jF i j ~k50!

2
1

2 (
i 51

2

r iE d3k

~2p!3
F i i ~k!. ~10!

The equations for the MF critical loci are also obtain
within HRT as the lowest-order approximation to the requi
ment that the RG flow generated by the evolution equat
~4! drives the free energy of the mixture towards its fix
point. This gives the following equations@17#:

]2

]c1
2 S bAMF

V D50, ~11!

]3

]c1
3 S bAMF

V D50, ~12!

]2

]c1]c2
S bAMF

V D50, ~13!

wherec1 , c2 are obtained from the original densitiesr1 , r2
via ana priori unknown rotation such that Eq.~13! is satis-
fied. Equations~11! and ~12! are formally similar to the
equations for the critical point of a pure fluid, except th
here the densityr has been replaced by the variablec1. We
6-5
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note that Eqs.~11! and ~13! amount to requiring that the
hessian determinant of the free energy must vanish at
critical point, and that the vanishing eigenvalue correspo
to the eigenvector directed alongc1. This is the linear com-
bination of the densities that gives the direction of strong
fluctuation, and identifies the order parameter of the tra
tion. For the solutions of Eqs.~11!–~13! to yield actual criti-
cal points, a further constraint has to be imposed, i.e.,
condition of thermodynamic stability ensuring that even
critical point is an equilibrium state of the system, and
such is stable against density and concentration fluctuati
The stability conditions at a critical point read@17#

]2

]c2
2 S bAMF

V D.0, ~14!

F ]3

]c1
2]c2

S bAMF

V D G 2

2
1

3

]2

]c2
2 S bAMF

V D ]4

]c1
4 S bAMF

V D,0.

~15!

The three equations~11!–~13! with the conditions~14! and
~15! contain four unknowns, namely,r1 , r2 , T, and the
state-dependent angleg of the rotation that identifies the
proper axesc1 , c2. As g is varied, they will generate a se
of lines in the thermodynamic space. We must observe t
when several critical lines are present, one should also ch
that a critical point does not fall into the coexistence reg
originating from another critical line. In mean-field theor
this circumstance can occur without violating the stabil
conditions~14! and ~15!, when the point considered lies be
tween the binodal and the spinodal surfaces of a neighbo
transition. In such a situation, a solution of Eqs.~11!–~15!
corresponds to a critical point which, while still locall
stable, is however globally metastable with respect to fi
order phase separation. In order to assess this possibility
should then determine the mean-field binodal surfaces b
Maxwell construction. This has not been done here. Ho
ever, we can discriminate between stable and metastabl
gimes, at least for equimolar concentrations, by compa
our results with those obtained in Ref.@1#, where mean-field
binodals were determined. We recall that at the mean-fi
level the phase behavior as a function ofd is independent of
the profile of the attractive interactionF i j , since this enters
in the approximation only via its spatial integral. A change
the form ofF i j is then taken into account by simply resca
ing the temperature.

Let us now consider the critical lines of the symmet
mixtures we are interested in. Because of the attractive in
action between the particles, we expect that for suitable t
perature, density, and concentration, the system will unde
a liquid-vapor transition. This is certainly true for states
low or high concentration, where one of the two species w
play a minor role. On the other hand, since the interact
between unlike particles is weaker than that between
particles, the internal energy will tend to promote demixi
between the two species. For high enough density, this
crease in the absolute value of the internal energy may o
come the loss in entropy implied by the demixing, and
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mixing-demixing transition may appear. Therefore, bo
liquid-vapor and mixing-demixing critical lines are expecte
As the unlike-to-like interaction ratiod is lowered, the
mixing-demixing transition becomes more favored, and
corresponding critical line will move to lower density. Th
projections of the mean-field critical lines on the densi
concentration plane for a relatively small value ofd50.4 are
reported in Fig. 1~a!. The open dots mark the positions of th
minima of the critical temperature, while the arrows draw
along the critical lines give a graphic representation of
relative weight of density and concentration fluctuation
thereby showing the direction of the order parameterc1 de-
termined by Eqs.~11!–~13!. Specifically, the anglef be-
tween the arrows and the density axis gives the fluctuatio
the order parameter corresponding to a given fluctuation
the total densityr and concentrationx as dc15dr cosf
1r dxsinf. Arrows parallel to ther andx axis then indicate
pure liquid-vapor and mixing-demixing transitions, respe
tively. Figure 1~a! shows a mixing-demixing critical line a
equal species concentrationx51/2. On the low-density side

FIG. 1. Density-concentration projection of the mean-field cr
cal lines of a symmetric mixture for several values of the interact
parameterd5e12/e11. The total densityr is the sum of the densi-
tiesr1 , r2 of the components, and the concentrationx is defined as
r2 /r. The open dots mark the locations of the local minima in t
critical temperature. The arrows indicate the direction of the or
parameter~see text!.
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this intersects another critical line that connects the crit
points of the pure species. As one moves from the pure
cies to the equimolar mixture, the direction of the order p
rameter changes continuously from pure liquid-vapor to p
mixing demixing. The critical temperature, not shown in t
figure ~see the lower panel of Fig. 5 for the similar cased
50.5), initially decreases until it reaches a minimum at t
points symmetric with respect tox51/2, after which it starts
increasing and keeps on doing so along the mixing-demix
line as the density is increased. This behavior of the crit
temperature is related to the change in the order paramet
the transition. Close tox50 or x51, where phase separatio
is essentially of liquid-vapor type, increasing the amount
the dilute component increases the weight of the interac
between unlike species in the internal energy. Since here
haved,1, this leads to a decrease of the overall attract
contribution to the internal energy, resulting in a lower cri
cal temperature of the liquid-vapor transition. On the oth
hand, the same argument implies that for a transition wh
is mainly mixing-demixing in character, approachin
equimolar concentration increases the gain in internal ene
entailed by the demixing, so that the critical temperature
creases as one moves towardsx51/2. Once the mixing-
demixing critical line has been reached, an increase of
density at constant concentration similarly favors the en
getic contribution to the free energy and leads to an incre
of the critical temperature.

As d is increased, the mixing-demixing line, as not
above, moves to higher density, and so does that portio
the line originating from the pure species where the tran
tion is predominantly of demixing type. At aboutd50.46, a
new feature appears in the critical lines, namely, a cresc
shaped line at low density and concentration spanning
interval centered atx51/2, where the transition is essential
liquid vapor. This is shown in Fig. 1~b! for d50.65. The
occurrence of such a critical line can be intuitively explain
as follows: ifd were equal to 1, the mixture would reduce
a one-component hard-sphere fluid with attractive tail int
action. If d is not too small, a nearly equimolar mixture ma
still behave like a sort of ‘‘effective’’ one-component flui
displaying a liquid-vapor transition. In order for this to ha
pen, however, the density has to be low enough, so that
smaller gain in internal energy resulting from choosing
liquid-vapor phase separation at intermediate concentra
instead of a mixing-demixing one can be compensated b
larger entropy. We must point out that, on the basis of
investigation performed in Ref.@1# and the discussion mad
here below Eqs.~11!–~15!, we do not expect this critical line
to appear in the equilibrium phase diagram right aboved
50.46. In fact, the interval 0.46,d,0.605 corresponds to
the hidden-binodal regime of Ref.@1#, where the critical
point atx51/2 of the crescent-shaped line is metastable.
course, knowledge of the behavior of the point at equimo
concentration alone is not sufficient to deliberate about
fate of the whole critical line. In principle, some portions
it might become stable ford different from the valued
50.605 reported in Ref.@1#. However, this would imply a
change in the topology of the critical lines with respect
that shown in Fig. 1~b! which we did not observe when fluc
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tuations are taken into account~see Sec. IV!, and we regard
such an occurrence as rather unlikely. In summary, it
palusible that the valued50.605 obtained in Ref.@1# sets the
threshold for the appearance in the mean-field equilibri
phase diagram of the whole crescent-shaped critical line
sides the point atx51/2. The critical temperature along th
crescent-shaped line changes very little, typically by few p
cent, and it presents a shallow minimum atx51/2. Along the
other critical lines the qualitative behavior of the temperat
is the same as in Fig. 1~a!. For relatively lowd, the minima
of the critical temperature located along the critical line ar
ing from the pure species are higher than the temperatur
the ends of the crescent-shaped line, while the convers
true for d larger than about 0.64.

As d is increased, the crescent grows towards larger
smaller concentrations, until ford50.653 38 the critical lines
meet each other, resulting in the topology shown in Fig. 1~c!.
Whend grows above this value, the former critical line orig
nating from the pure components splits: the portions at l
and high concentration, where the transition is mainly liqu
vapor, join the crescent-shaped line so as to form a liqu
vapor critical line ranging fromx50 to x51, while the part
at intermediate concentration, where demixing prevails,
mains connected to the demixing line atx51/2 and detatches
from the liquid-vapor line, giving a fork-shaped critical lo
cus. The situation just described is illustrated in Fig. 1~d! for
d50.7. The liquid-vapor critical line has just one temper
ture minimum atx51/2, in agreement with the above obse
vation that for a liquid-vapor transition, increasing the co
centration of the dilute component leads to a decrease of
critical temperature. The two temperature minima symme
with respect tox51/2 are now located along the fork-shap
line. The relative temperature change along this line is ho
ever quite small, as already observed for the crescent-sh
line of Fig. 1~b!. For d just above the value 0.653 38 tha
marks the boundary between the topology of Fig. 1~b! and
that of Fig. 1~d!, the critical temperature at the tips of th
fork-shaped line is higher than the minimum atx51/2 on the
liquid-vapor line, while the converse is true at higherd, in-
cluding the valued50.7 to which Fig. 1~d! refers. A similar
behavior is found when comparing the minimum on t
liquid-vapor line with the temperature at the intersection
the fork with the mixing-demixing line.

If d is further increased, the liquid-vapor line becom
more and more similar to a straight segment, as is to
expected sinced51 corresponds to a one-component flu
whose critical density is obviously independent of the co
centration. At the same time, the fork-shaped line shrinks
moves to higher density, together with the mixing-demixi
line. Strictly speaking, the fork disappears from the critic
lines only in the one-component limitd→1. However, when
d gets larger than a valued0 between 0.75 and 0.76, thi
locus is certainly metastable, as the pressure along it is
erywhere negative. We observe that this is a sufficient c
dition for metastability, but not a necessary one. In fact,
cording to Ref.@1#, the portion of the fork near equimola
concentration has already disappeared from the equilibr
phase diagram ford.0.708. We are then left with two dis
connected critical lines: the mixing-demixing one, that t
6-7
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minates at an end point, and the liquid-vapor one at low
density, as shown in Fig. 1~e! for d50.8. For d→1, this
topology evolves into that expected for the one-compon
fluid, as explained above: the mixing-demixing line even
ally disappears, and the liquid-vapor line becomes a segm
at constant density.

IV. HRT PHASE DIAGRAM

As we said in the Introduction, HRT calculations we
performed for an interaction that consists of a hard-sph
repulsive core and an attractive Yukawa tail, whose inver
range parameterz was set toz51.8 for both like and unlike
species. This value ofz is appropriate for representing the L
potential @31# and it has been widely adopted in the liter
ture. We illustrate our results by considering, for differe
values of the parameterd, several isothermal sections of th
phase diagram, each of which corresponds to a single H
run. In our opinion, this gives a clearer picture than the o
that would be obtained by mapping the phase diagram
givend on a single three-dimensional plot. In the followin
temperature and density will be identified with the cor
sponding reduced quantitiesT* 5kBT/e, r* 5rs3, and the
asterisks will be omitted. Figure 2 shows the phase diag
on the density-concentration plane at four different tempe
tures ford50.65. At each temperature, the shaded areas
note the coexistence domains. Because of the symmetr
the model considered here, the phase diagram is obvio
symmetric with respect to the equal-concentration axisx
51/2. We already pointed out that in the HRT the conditio
of thermodynamic equilibrium that define the coexisten
region are implemented by the theory itself. In fact, ins
the shaded domains shown in the figures the hessian d
minant of the Helmholtz free energy is identically vanishin

FIG. 2. Isothermal sections of the coexistence region of a s
metric HCY mixture in ther-x plane according to the HRT. Th
inverse interaction range is equal toz51.8 and the interaction ratio
is equal tod50.65. The dots mark the locations of the critic
points.
04611
r

nt
-
nt

re
e-

t

T
e
at

-

m
-

e-
of
ly

s
e

er-
.

We stress that this is essentially different from what is fou
in mean-field-like approaches, where phase separatio
marked by the appearance of spinodal surfaces in theT-r-x
space, which give spinodal lines upon intersecting with
plane at constantT like those of the figure. Inside the region
bounded by these lines, the hessian of the free energy at
unphysically negative values. In the HRT, on the other ha
the hessian does not become negative, but it vanishes i
tically in a region of finite measure@32#. If we consider a
curve at given temperature and pressure in ther-x plane, it is
readily seen that along the portion of this curve that l
inside the domain where the hessian vanishes, the chem
potential of both species are identically constant. Therefo
such a domain is indeed the coexistence region of the m
ture. This clearly appears from Fig. 3, which shows that
domains of Fig. 2 collapse into lines when they are plotted
the P-Dm plane, whereP is the pressure, andDm5m1
2m2 is the difference between the chemical potentials of
two species. Because of the conditions of thermodyna
equilibrium, the coexistence regions in theT-P-Dm space
appear as ‘‘sheets’’ bounded by critical lines. Intersect
with a plane at constantT then yields lines like those of Fig
3, terminating at critical points. Each point of these lin
corresponds to an isobar of the domains of Fig. 2, i.e., to a
line. At a critical point, the tie line reduces to a single poin
We recall that in ther-x plane a critical point is not, in
general, an extremal point of the phase boundary@30#, either
in r or in x, and it cannot be detected by just considering
shape of ther-x coexistence boundaries. Critical points ha
been marked by dots in Fig. 2 and in the following figur
that show the phase diagram in ther-x plane for different
values ofd.

Panel~a! of Figs. 2 and 3 shows the phase diagram a
temperature somewhat lower than the critical tempera

- FIG. 3. Same as Fig. 2 in the pressure-chemical potential pl
Dm5m12m2 is the difference between the chemical potentials
the components. Note how the points of the coexistence reg
shown in Fig. 2 collapse into lines as a consequence of the co
tions of thermodynamic equlibrium.
6-8
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PHASE DIAGRAM OF SYMMETRIC BINARY MIXTURES . . . PHYSICAL REVIEW E 67, 046116 ~2003!
Tc
0.1.2 of the pure components. Three distinct coexiste

domains are present. The two at low density originate fr
the coexistence regions of the pure components, and
both terminate at a critical point. The high-density region
Dm50, which is present also at temperatures aboveTc

0 ,
involves, at each fixed density, coexistence between two

ids at concentrationx̄ and 12 x̄, respectively, and terminate
at a mixing-demixing critical point atx51/2. Below a cer-
tain temperatureTt.1.06, however, the demixing region b
furcates into two branches@see panel~b! of Fig. 3#, each of
which ends at a critical point withDmÞ0, xÞ1/2. The
former mixing-demixing critical point atx51/2 has now be-
come a first-order coexistence boundary, at which a mi
fluid at equal species concentration coexists with a demi
fluid at higher density similar to that found aboveTt , con-
sisting of two phases with concentrations symmetric w
respect tox51/2. At the temperatureTt at which the bifur-
cation develops, the critical line atx51/2 and the two criti-
cal lines generated by the symmetric branches forT,Tt
meet at a tricritical point. These critical lines can be visu
ized as the boundaries of the coexistence ‘‘sheets’’ in
T-P-Dm space whose projections on theP-Dm plane at con-
stantT are shown in Fig. 3. At the tricritical point, the mixe
fluid at x51/2 and the two phases that constitute the
mixed fluid become critical simultaneously. Again, in ther-x
plane the tricritical point does not display any special feat
that makes it immediately detectable. Inspection of ther-x
phase boundary alone does not allow one to tell whether
high-density coexistence region displays a single criti
point atx51/2, two symmetric critical points, or a tricritica
point. By further lowering the temperature, the high- a
low-density coexistence regions expand and get closer, u
at a temperatureTd.1.04 each of the low-density region
meets the high-density one at a double critical point. T
critical lines in ther-x plane have the same topology as
Fig. 1~a!. In particular, the tricritical point corresponds to th
intersection of the mixing-demixing critical line atx51/2
with the line that spans the concentration axis fromx50 to
x51. The latter actually results from projecting on ther-x
plane the two critical lines into which the mixing-demixin
critical line bifurcates belowTt and those originating from
the critical points of the pure species. The two symme
double critical points atT5Td where these critical lines
meet in couples correspond to the temperature minimax
Þ1/2 located on the critical line of Fig. 1~a!. We observe
that, unlike tricritical points, double critical points do n
entail the intersection of topologically distinct critical line
In fact, tricritical points are found in the model consider
here because of its special symmetry, but they do not oc
in real binary mixtures, while double critical points are fr
quently found in real mixtures, including mixtures of nob
gases such as neon-krypton@33# and neon-xenon@34#. Below
Td , the coexistence domain consists of one connected
gion, without any critical point, as shown in panels~c! and
~d! of Fig. 3. A section of the phase diagram atx51/2 in the
r-T plane is plotted in Fig. 4~a!, showing the same behavio
as in Fig. 2~d! of Ref. @1#. The tricritical temperatureTt and
densityr t are located at 1.07,Tt,1.08, 0.527,r t,0.533,
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respectively. The HRT and the mean-field critical lines a
compared in Fig. 5 ford50.5. This value ofd is small
enough to give the same topology of the critical lines in HR
and mean-field theory, save for an extremely short line at
density and nearly equimolar concentration obtained in m
field, which belongs to the metastable regime~see the dis-
cussion in the preceding section! and has not been reporte
here. The figure shows the projections of the critical lin
both in ther-x and in thex-T planes; in the latter case, th
mixing-demixing line atx51/2 has not been shown. For th
pure species, it is known from the comparison of the me
field results with accurate simulation data for the critical co
stants of the Yukawa fluid with the same inverse rangez
51.8 considered here@35#, that mean-field theory underest
mates the critical density by about 20% and overestima
the critical temperature by about 10%. Basically the sa
differences are found by comparing the mean-field and
HRT results, as the HRT provides a very good determinat
of the critical point of LJ-like fluids@24,36,37#. Figure 5
shows that similar discrepancies between mean field
HRT hold also for the critical loci of the binary system. W
observe that the direction of the order parameter is little

FIG. 4. Phase diagram in ther-T plane of the HCY mixture for
the special case of equimolar concentrationx51/2 and several val-
ues of the interaction parameterd. Open and full dots denote, re
spectively, thel line and the first-order phase boundary. The lett
V, L denote, respectively, the vapor and mixed liquid phase.
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fected by the inclusion of fluctuations, at least for the pres
case where these do not change the topology of the cri
lines.

According to our HRT calculations, the valued50.65 is
actually nearly coincident with the upper limit ofd for the
topology that we have just described. The scenario at slig
largerd is illustrated in Figs. 6 and 7, which show the pha
diagram in ther-x andP-Dm planes ford50.665. At tem-
peraturesT above 1.023, the phase diagram evolves as
fore: on loweringT, the high-density coexistence region b
furcates at a tricritical point, and each of the resulti
branches merges with the low-density coexistence reg
that originate from the pure species, so that just belowT
51.03 there are no critical points left in the phase diagra
However, atT51.023 two critical points reappear at lo
density. In theP-Dm plane, this is marked by the appearan
of two ‘‘twigs’’ that stick out of the low-density coexistenc
region, each terminating at a critical point, as shown in pa
~c! of Fig. 7. By slightly loweringT, these twigs grow longer
and for T5Td51.022 they meet at a critical double poi
located atDm50. At the same time, the low-density lobes
the coexistence region in ther-x plane become very elon

FIG. 5. Critical lines in ther-x plane ~upper panel! and x-T
plane~lower panel! of the HCY mixture withd50.5. Dotted lines:
mean-field theory. Full dots: HRT. In the upper panel, the solid l
is a guide for the eye obtained by smoothly interpolating betw
the dots, and the arrows indicate the direction of the order par
eter. The order parameter along the mixing-demixing critical line
x51/2 is not shown here for clarity and is parallel to thex axis
according to both mean field and HRT. In the lower panel,
mixing-demixing critical line is not shown.
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gated, and coalesce atx51/2. The topology of the critical
lines is the same as in Fig. 1~b!, where the crescent-shape
line at low density is that described by the new family
critical points. We remark that, according to mean-fie
theory, this line is extremely shallow with respect to the te
perature. This is confirmed by the HRT results just report
which give a relative variation of the critical temperature
about 0.1%. BelowTd @see panel~d! of Fig. 6#, the phase
diagram presents an ‘‘island’’ of homogeneous, mixed flu
surrounded by a ‘‘sea’’ of phase-separated fluid. A section
the coexistence region atx51/2 shows that in this regime w
have two kinds of phase equilibria at equal species conc
tration: on the one hand, below the tricritical temperatureTt
a demixed fluid at high density coexists with a mixed one
intermediate density as before. On the other hand, this m
fluid coexists, at slightly lower density, with another low
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FIG. 6. Same as Fig. 2 ford50.665.

FIG. 7. Same as Fig. 3 ford50.665.
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PHASE DIAGRAM OF SYMMETRIC BINARY MIXTURES . . . PHYSICAL REVIEW E 67, 046116 ~2003!
density mixed fluid. The latter phase equilibrium termina
for T5Td at a vapor-liquid critical point. Therefore, th
phase diagram atx51/2 exhibits both a critical and a tri
critical point. On further lowering the temperature belowTd ,
the island of mixed fluid shown in Fig. 6 becomes smal
and smaller, until it is eventually swallowed by the coexi
ence region. Correspondingly, in ther-T plane the two phase
boundaries atx51/2 meet at a triple point, where the tw
mixed fluids at different densities coexist with the demix
fluid @38#. Below the temperature of the triple point, the d
mixed fluid at high density coexists with the mixed one
low density. The phase diagram at equal species conce
tion is similar to Fig. 2~c! of Ref. @1# and to that shown in
Fig. 4~b! for the cased50.67. From the picture given above
it is clear that the low-density lobes of the coexistence reg
meet at a temperature lower than that at which each l
meets the high-density region. This in turn is lower than
temperature at which the tricritical point appears. Therefo
for the topology just discussed the liquid-vapor critical te
peratureTd is always lower than the tricritical temperatu
Tt . In Fig. 4~b!, the tricritical point is located at 1.04,Tt
,1.05, 0.540,r t,0.547, while for the liquid-vapor critica
point we have 1.0235,Td,1.024,rd50.3460.003.

A different situation arises asd grows above 0.67. Figure
8 and 9 depict the evolution of the phase diagram fod
50.68. As before, a tricritical point is present atx51/2, as
shown by the bifurcation of the high-density coexistence
gion. On the other hand, on lowering the temperature
low-density branches of the coexistence region do not me
with the high-density one as before, but instead meet e
other at a critical double point betweenT51.03 and T
51.025. In this regime the isothermal sections of the ph
diagram in ther-x plane consist of two disconnected d
mains, with that at lower density spanning the whole conc
tration axis fromx50 to x51. Just belowT51.025, two
twigs sprout out of the low-density coexistence domain
theP-Dm plane. In such a situation this domain presents t

FIG. 8. Same as Fig. 2 ford50.68.
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symmetric critical points, corresponding to the ends of
twigs. On further loweringT, the twigs grow longer, and fo
T between 1.015 and 1.01 each of them meets a branch o
high-density coexistence region at a critical double po
The low- and high-density coexistence domains then join
two points symmetric with respect tox51/2, leaving be-
tween them an island of one-phase fluid~see Fig. 8!, that
eventually disappears at low temperature. This scenari
somehow the converse of that previously described fod
50.665, where the high-density coexistence domain mer
with the low-density ones originating from the pure comp
nents, and the one-phase island inside the coexistence re
is formed because of the twigs meeting each other ax
51/2. The topology of the critical lines for the case ju
discussed is that of Fig. 1~d!: this time the critical line that
goes fromx50 to x51 is not connected to the mixing
demixing critical line, and it has a temperature minimum
x51/2, corresponding to the coalescence of the low-den
coexistence regions into one connected domain. The mix
demixing critical line intersects at the tricritical point tw
symmetric critical lines as before, which however do n
meet those originating from the pure species. Instead, t
merge with the lines described by the family of critical poin
that sprout out of the low-density coexistence region, res
ing in the fork-shaped line of Fig. 1~d!. This presents two
symmetric temperature minima at the value ofT at which the
critical lines meet each other. As already observed for
crescent-shaped line of Fig. 1~b!, the temperature along th
fork is actually almost constant, both according to mean-fi
theory and HRT, so that the minima are extremely shallo
The topology of the phase diagram at equimolar concen
tion is similar to the previous one illustrated in Fig. 4~b! for
d50.67. In particular, in a certain temperature interval
cluding that where the two-phase region encloses a o
phase domain, there are two different phase equilibria ax
51/2. For the coupling parameterd50.68 considered here
the liquid-vapor critical temperatureTd , which is the tem-
perature minimum along the liquid-vapor critical line,

FIG. 9. Same as Fig. 3 ford50.68.
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smaller than the tricritical temperatureTt , as ford50.665.
However, in the present topology where, on loweringT, the
low-density coexistence domains merge with each other
fore they merge with the high-density one, nothing preve
the liquid-vapor critical point atx51/2 from occurring at a
higher temperature than the tricritical point. In theP-Dm
plane, this corresponds to the high-density coexistence
gion bifurcating at a temperature lower than that at which
low-density branches meet. Such a scenario in fact co
along starting from aboutd50.7. The phase diagram atx
51/2 for this value ofd is shown in Fig. 4~c!, and is the
same as that of Fig. 2~b! of Ref. @1#. The tricritical point and
the liquid-vapor critical point are located at 1.0,Tt,1.01,
0.567,r t,0.573, 1.035,Td,1.04, rd50.3360.003.

The phase behavior of the system ford intermediate be-
tween the values 0.665 and 0.68 discussed above is w
being considered in more detail. Figures 10 and 11 show
phase diagram ford50.67. On lowering the temperature, th
low-density coexistence domains coalesce at abouT
51.0235, and at a slightly lower temperature aroundT
51.023 the resulting region coalesce with the high-den
coexistence domain. The phase diagram in ther-x plane is
then similar to that already shown ford50.68, except that
here the low- and high-density domains meet at nearly
same temperature. However, if one considers temperat
just aboveT51.0235 it appears that, unlike what found f
the d studied above, the phase diagram displays six crit
points, two for each of the disconnected domains t
make up the coexistence region. This is clearly shown in
P-Dm plane of Fig. 11 forT51.024. In the present case it
not obvious to tell whether the topology of the critical lin
in ther-x plane is that of Fig. 1~b! or of Fig. 1~d!, because it
is difficult to ascertain which is the part of the coexisten
region in theP-Dm plane that is sprouting from the othe
and consequently, whether the high-density branches of
coexistence domain are bound to meet those originating f
the pure species as ford50.655, or the twigs as ford

FIG. 10. Same as Fig. 2 ford50.67.
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50.68. We are therefore very close to the boundary betw
the two topologies of the critical loci, that corresponds to t
scenario of Fig. 1~c!. This is marked by the presence of tw
tricritical points at nonequimolar concentration besides t
at x51/2. In such a situation the growth of a seconda
structure~the twigs! from an already existing one~the main
branch! is replaced by a bifurcation where both branch
stem out of the tricritical point at the same temperature.
continuity reasons, we expect that in a very narrow range
d values that includes 0.67 and is contained in the inter
0.665,d,0.68, the configuration with six critical point
shown in Fig. 11 can be found for the topology of the critic
lines of both Fig. 1~b! and Fig. 1~d!. If one considers the
critical lines of Fig. 1~b!, this occurs when the critical tem
perature at the ends of the low-density crescent-shaped
is higher than the minima located along the line originati
from the pure species. In the case of Fig. 1~d!, the require-
ment is that the local temperature minimum atx51/2 along
the liquid-vapor line must be lower not only than the tricri
cal temperature, but also than that of the critical points
cated at the tips of the fork-shaped line. It may also be wo
pointing out that, strictly speaking, the watershed betwe
the density-concentration phase diagrams of Fig. 6 and
8, that represent the two different ways by which a domain
one-phase fluid can be enclosed into the coexistence reg
has not to coincide with the boundary between the criti
lines just discussed, although the two are expected to o
for very similar values ofd. In fact, according to mean-field
theory, when the critical lines have the topology of Fig. 1~c!,
the coexistence region in ther-x plane still looks like that of
Fig. 6. This implies that there is an extremely narrow ran
of d where the topology of the critical lines is as in Fig. 1~d!,
and the topology of the phase diagram in ther-x plane is as
in Fig. 6. In theP-Dm plane such a regime is marked by th
twigs joining the bifurcation of the high-density coexisten
region at a temperature higher than that at which the lo
density branches meet each other. We have not chec
whether this scenario comes along also in the HRT, or

FIG. 11. Same as Fig. 3 ford50.67.
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stead it is replaced by the converse one, where the cri
lines have the topology of Fig. 1~b!, and the phase diagram
in the r-x plane has the topology of Fig. 8.

Further information on the nature of the phase equilib
is obtained by considering the tie lines, i.e., the lines in
r-x plane that connect the phases at coexistence at a ce
temperature and pressure. A few tie lines of the mixture w
d50.67 are shown in Fig. 12 forT51.024 ~left panel! and
T51.023~right panel!, corresponding, respectively, to pane
~b! and~d! of Fig. 10. We have chosen to report the tie lin
for the cased50.67 because of its particularly rich pha
diagram, several features of which are separately found
for different values ofd. In both panels of Fig. 12, the high
density portion of the coexistence region is characterized
the presence of a demixed fluid which, as said above, c
sists of two phases at the same density and concentra
symmetric with respect to the equal-concentration axis. A
consequence, the average density coincides with that o
coexisting phases irrespective of their relative amount in
demixed fluid, resulting in strictly vertical tie lines. Sinc
both panels refer to temperatures below the tricritical te
peratureTt , the phase equilibrium just described does n
extend down to the left boundary of the high-density co
istence domain. At a certain densityrD , the two coexisting
fluids at symmetric concentrationsx̄, 12 x̄ coexist in turn
with a fluid at a lower densityrM and equimolar concentra
tion. The densitiesrM , rD are the boundaries of the firs
order coexistence domain that separates the mixed-fluid
demixed-fluid regions of Fig. 4~b! for T,Tt . In the r-x
plane, this three-phase equilibrium takes place in a trian
like domain bounded by three tie lines meeting in couples
the points (rD ,x̄), (rD ,12 x̄), (rM ,1/2). These lie very
close to~but do not exactly coincide with! the two oblique
lines and the leftmost vertical line shown in the high-dens
region of Fig. 12. The two symmetric portions of the hig
density region of the left panel that lie above and below
three-phase domain correspond in theP-Dm plane to the
branches of the bifurcation that stems from the line atDm
50 ~see Fig. 11!. Each of them presents coexistence betwe
two phases which differ both in density and concentrati
terminating at a critical point where the tie line reduces t
single point. In the right panel the critical points are abse

FIG. 12. Coexistence region in ther-x plane ford50.67 atT
51.024 ~left panel! and T51.023 ~right panel!, corresponding to
panels~b! and ~d! of Fig. 10, showing a few tie lines connectin
phases at coexistence. The different shades of gray give a me
of pressure~black, low pressure; white, high pressure!.
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as the high- and low-density coexistence regions h
merged into one connected domain. The left panel a
shows the tie lines shrinking at the four critical points l
cated on the two symmetric lobes of the low-density co
istence region. An interesting feature that appears from
arrangement of the tie lines in this region is the presence
two more domains of three-phase coexistence, such tha
coexisting phases have concentrations that lie on the s
side of thex51/2 axis. At temperatures at which the coe
istence region is connected and encloses an island of ho
geneous fluid as in the right panel, this sort of three-ph
equilibrium could be expected just on the basis of the f
that different tie lines cannot intersect each other. Howe
the presence in the low-density region of the two critic
points associated with the twigs in theP-Dm plane implies
that three-phase coexistence is observed in this region e
at temperatures at which it has not yet merged with the hi
density coexistence domain. We also observe that in
neighborhood of thex51/2 axis where the two lobes of th
low-density region coalesce, the tie lines are nearly horiz
tal, meaning that the concentration of the coexisting pha
are very similar. At exactlyx51/2 azeotropy occurs, i.e., on
finds a purely liquid-vapor transition between two phases
equal concentration, as already observed above in conne
with the phase diagram atx51/2 in ther-T plane. The criti-
cal point topping the liquid-vapor coexistence curve
equimolar concentration in Figs. 4~b! and 4~c! is therefore an
azeotropic critical point.

As d increases above 0.7, the curvature of both the lo
and high-density coexistence boundaries in ther-x plane
rapidly decreases, and the pressure at which the bifurca
of the high-density coexistence region takes place gets cl
and closer to that of the coexisting vapor and liquid pha
on the low-density region atx51/2. As a consequence, th
one-phase island bounded by the coexistence region beco
smaller and involves a fluid at nearly equimolar concent
tion. One can then ask whether this feature of the ph
diagram will disappear at a certaind0,1, or instead only in
the limit d→1. The former case corresponds to a situat
where for d.d0 the high-density coexistence region do
not undergo any bifurcation in theP-Dm plane, but it always
presents a mixing-demixing critical point atx51/2, Dm
50. At low enough temperature, this critical point meets t
low-density coexistence region at a first-order phase bou
ary. The topology of the critical lines in ther-x plane is that
of Fig. 1~e!: the mixing-demixing line terminates at a critica
end point where the low- and high-density coexistence
gions meet. The phase diagram atx51/2 corresponding to
this scenario is that of Fig. 2~a! of Ref. @1#. As before, the
equimolar mixture displays both a liquid-vapor transitio
that occurs below a certain critical temperature and invol
two mixed fluids of different densities, and a mixing
demixing transition at high density. In this case, however,
transition between the mixed liquid and the demixed fluid
always second order down to the temperature of the
point, below which the demixed fluid coexists with a mixe
vapor of much lower density. The situation where the cont
between the low- and the high-density coexistence reg
always occurs at two distinct points symmetric with resp

ure
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FIG. 13. Same as Fig. 2 ford50.8. The critical points in panel~b! are not shown, because for this value ofd the resolution of our
numerical calculation does not allow us to locate them.
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to x51/2 until d gets equal to 1 is instead consistent with t
phase diagram remaining qualitatively similar to that fou
for d50.7 with critical lines as in Fig. 1~d!, albeit the fork-
shaped line will become vanishingly small asd approaches 1
and the mixing-demixing line will be pushed to higher de
sity. The phase diagram of the equimolar mixture in ther-T
plane will qualitatively look as that of Fig. 4~c!. As a conse-
quence, as long as one hasd,1 there will be a small tem-
perature interval between the triple point and the tricriti
point, where the transition between the mixed and the
mixed liquid is of first order. This is the scenario advocat
in Ref. @39# on the basis of modified hypernetted cha
~MHNC! calculations on a symmetric LJ mixture, while th
simulations performed in Ref.@1# on a square-well system
supported the existence of a critical end point at high eno
d. Some calculations that we previously performed on
hard-sphere LJ mixture using a 1003100 density-
concentration grid@19# also suggested that ford50.8 the
phase diagram of the system presents a critical end p
However, the present results for the HCY potential shown
Figs. 13 and 14 indicate that ford50.8, the mixture most
likely does not have a critical end point: in fact, in a certa
narrow temperature range the coexistence region in ther-x
plane still encloses a domain of one-phase fluid with conc
tration varying in a small interval aroundx51/2. Since the
inverse rangez51.8 of the Yukawa potential considered he
gives a fair representation of the LJ interaction@31#, the dif-
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ference between this behavior and that reported in Ref.@19#
most probably does not depend on some intrinsic differe
between the two interactions, but just on the fact that
higher resolution entailed by the 1503150 grid used in this

FIG. 14. Same as Fig. 3 ford50.8. In panel~a!, the high-
density coexistence region atDm50 does not appear as its pre
sures are outside the scale of the figure.
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work allows one to study the contact between the low- a
high-density coexistence regions with better accuracy tha
Ref. @19#, thereby uncovering the presence of a small o
phase domain. To check that this is the case, we have
vestigated the hard-sphere LJ mixture withd50.8 by the
larger 1503150 grid in a narrow temperature interval th
brackets the value at which the low- and high-density regi
coalesce. We found that the resulting phase diagram ha
deed the same topology as that of Fig. 13 for the HCY m
ture. We should observe that the cased50.8 actually lies at
the limit of resolution even for the larger grid employed he
the homogeneous domain inside the coexistence regio
the r-x plane extends only one grid point in ther direction,
while the phase diagram in theP-Dm plane does not presen
any of the features associated with the occurrence of su
domain on the scale of the figure, so that it cannot be cle
distinguished from the kind of diagram one would expect
the presence of a critical end point. In particular, there is
sign of the bifurcation of the high-density coexistence reg
in the P-Dm plane that we expect if the low- and high
density regions have to meet at two points of nonequimo
concentration according to the scenario of Fig. 9. This m
probably depends on the fact that, for the relatively h
value of d considered here, the densities of the mixed a
demixed liquids at coexistence are so close, that their dif
ence is comparable to the mesh size. As a consequence
differences in the pressures and chemical potentials of ne
boring but noncoexisting points will also become comp
rable to the numerical errors. A little numerical noise in t
P-Dm plane due to the finite mesh used in the calculation
in fact always present, as shown by close inspection of
relevant figures, but only at highd does this become a hin
drance for a clear description of the phase behavior. We
not pursue any investigation ford.0.8, becausea fortiori in
such a regime the resolution allowed by the grid used h
would not enable us to discriminate between the occurre
of a critical end point, or an extremely small region of h
mogeneous fluid that undergoes a first-order demixing tr
sition on slightly increasing the density. Therefore, we
not in a position to say whether a critical end point atx
51/2 will eventually appear neard51, or instead a very
weak first-order transition will survive up tod51. Another
issue that is difficult to elucidate within the resolution of t
present calculation concerns the fate of the twigs discus
before in connection with the phase diagram topology
Figs. 8 and 9. As noted above, even at temperatures at w
the low-density coexistence regions that originate from
pure species have coalesced into one connected domain
latter can still show two symmetric critical points. When th
is the case, the low-density coexistence region in theP-Dm
plane presents two small twigs, each of them ending a
critical point. These twigs could either disappear at h
enoughd, or persist ford arbitrarily close to 1. If a critical
end point atx51/2 never appears and the topology of t
critical lines in ther-x plane is that of Fig. 1~d! until d gets
equal to unity, the latter case corresponds to a situa
where the low- and high-density coexistence regions w
always meet at two double critical points. As discuss
above, mean-field theory indeed gives two double criti
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points located along the fork-shaped line, but ford close to 1
they are certainly metastable since they correspond to n
tive pressure. If instead the twigs disappear befored reaches
1, there will be a value ofd above which the critical points
of the high-density coexistence region meet the low-den
region at two points of first-order coexistence. As a con
quence, the contact takes place at two critical end points w
concentrations symmetric with respect tox51/2 rather than
at two double critical points. This is the situation consider
in Ref. @39#. In such a case the critical lines in ther-x plane
have still the same topology as in Fig. 1~d!, except that the
temperature minima along the fork-shaped line have now
coincide with the tips of the fork, which correspond to th
two end points. It can also be worthwhile observing that,
principle, the twigs are not incompatible with a critical en
point at equimolar concentration. In fact, this could ev
give rise to a scenario where the presence of the end poi
consistent with the high- and low-density coexistence
gions meeting at nonequimolar concentration. Specifically
the critical points located at the ends of the twigs meet
high-density region at two points of first-order coexisten
thereby generating two symmetric critical end points withx
Þ1/2, nothing prevents the point at equimolar concentrat
of this region from remaining critical, until it also meets th
low-density region at a critical end point. We remark th
such a possibility hinges on the presence of the twigs and
related critical points on the low-density coexistence regi
In the converse situation where the critical end points ax
Þ1/2 result from the contact between two points of fir
order coexistence on the low-density domain and two criti
points on the high-density one, the requirement that the p
at x51/2 be critical is untenable, as pointed out in Ref.@39#.
The scenario just depicted is somewhat suggestive, a
could account for both the presence of a critical end poin
x51/2 above a certain value ofd reported in simulation
studies@1#, and the failure to observe the low- and hig
density coexistence regions coalescing atx51/2 found in the
present investigation as well as in Ref.@39#. However, we
must point out that at the present stage we do not have
solid evidence that this possibility does actually occur,
that we must regard it as a purely speculative conjecture

V. CONCLUSIONS

We have used the HRT to perform an investigation of
phase diagram of symmetric binary mixtures as a function
the unlike-to-like interaction ratiod. The microscopic inter-
action adopted consisted of a hard-core repulsion plus
attractive Yukawa tail potential with inverse rangez51.8.
Such a potential has been used many times in liquid-s
theory to describe a simple LJ-like fluid. For each value od
considered, results for the coexistence regions were obta
on the whole density-concentration plane at several temp
tures. The resulting phase portrait was related both to
different topologies of the mean-field critical lines that com
along asd is varied in the interval 0,d,1, and to the
behavior predicted by mean-field theory and simulation
sults@1# for a certain special class of the systems conside
here, namely, equimolar mixtures at molar fractionx51/2. A
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feature of the HRT that is particularly useful is that the d
mains of coexisting phases are straightforwardly obtained
the theory as the loci where the conditions of thermodyna
equilibrium between different phases are satisfied, with
any need of enforcing thema posteriori. Fulfillment of these
conditions is shown by the collapse of the isothermal s
tions of the coexistence regions on lines of theP-Dm plane,
P being the pressure andDm the difference between th
chemical potentials of the two species. This property ma
also easy to identify the critical points exhibited by the pha
diagram at a certain temperature.

According to the results previously obtained by mea
field theory and simulations, the phase diagram of symme
mixtures at equimolar concentration is characterized by th
different regimes, depending on the value ofd: at low d
(d,0.605 according to mean-field theory@1#! a mixing-
demixing critical line joins a mixing-demixing coexistenc
curve at the critical point, thereby generating a tricritic
point. For d closer to 1 (d.0.708 in mean field@1#!, the
mixing-demixing critical line joins a liquid-vapor coexis
ence curve at a critical end point. Finally, in a narrow int
val in d intermediate between the above regimes, the mixt
shows both a liquid-vapor coexistence curve and a mixi
demixing one at higher densities, topped, respectively, b
critical and a tricritical point. Our investigation clearly show
the tricritical point regime as well as the intermediate o
The latter is predicted to occur starting from aboutd
.0.65, in agreement with the simulation results for a squa
well mixture @1#, but it lingers on for larger values ofd than
those given by simulation: according to simulation, the e
point regime is reached ford.0.68, while according to HRT
d50.7 is still in the ‘‘transition’’ or intermediate regime, a
shown in Fig. 4~c!. As a matter of fact, we did not find an
clear evidence of the end point regime, since our calculati
indicate that the mixture is likely to be in the intermedia
regime ford as high as 0.8. However, on increasingd, the
transition region quickly moves to high density, and the fin
resolution allowed by the 1503150 grid used here become
insufficient to fully uncover the topology of the phase d
gram in this parameter range. For this reason, we did
investigate the behavior of the model ford.0.8. The results
obtained in this work are in qualitative agreement with
study based on the MHNC integral equation@39#, according
to which no critical end point at equimolar concentration
present up to at leastd50.81. The HRT and MHNC calcu
lations were performed on the HCY and on the LJ potent
respectively, while in the simulations both the hard-sph
plus square-well@1# and the LJ potential@15# were used. For
the latter interaction, the simulation results showed the e
tence of a critical end point ford50.7, similarly to what
found for the square-well potential. As observed in Sec. I,
HCY potential was also employed in other investigatio
based on the MSA@21#, the ORPA@22#, and the SCOZA@23#
theories, all of which yield for the phase diagram the sa
qualitative picture found in mean-field theory and simu
tions. Before drawing any definite conclusion about the
silience of the intermediate topology in the HRT, the role
the specific interaction adopted should be elucidated. In f
we do not see any general reason why the independenc
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the interaction profile which is intrinsic to the mean-fie
phase behavior should always hold also for more soph
cated approaches, specifically for the HRT. Moreover, o
can also imagine a scenario where the existence of a cri
end point at equimolar concentration is not prevented by
behavior observed here for the phase diagram in ther-x
plane, namely, the fact that, even for relatively highd, the
low- and high-density coexistence regions meet first at t
points symmetric with respect tox51/2 rather than atx
51/2. However, the present limits in resolution of our n
merical calculation do not allow us to say whether this co
jecture is actually relevant for the system studied.

An interesting issue that was considered here is how
phase portraits corresponding to the topologies mentio
above look like, if one moves off the plane of equimol
concentration. In particular, the intermediate regime
marked by the presence, in a certain temperature interva
a phase coexistence domain with a hole of homogene
fluid inside it. This comes along according to two distin
scenarios that can occur as the temperature is lowered
0.65,d,0.67, the two low-density coexistence regio
originating from the pure species meet the high-density
existence region associated with the mixing-demixing tran
tion, and subsequentely they meet each other, leaving a
main of mixed fluid enclosed inside the two-phase regi
For d.0.67, first the two low-density coexistence regio
meet each other, and then the resulting connected dom
meets the high-density coexistence region at two points s
metric with respect to concentrationx51/2, leaving some
one-phase fluid in between. In the former case, the temp
ture Td of the liquid-vapor critical point atx51/2 is always
lower than the tricritical temperatureTt , while in the latter
caseTd can be either lower or higher thanTt , depending on
d. The present calculation givesTt,Td starting from about
d50.7.

Because of the existence of both a liquid-vapor and
demixing transition, the critical loci show both a line th
spans the concentration axis and connects the critical po
of the pure components, and a mixing-demixing line ax
51/2. The tricritical point topology corresponds to a situ
tion where these lines are connected, and the character o
transition changes continuously from liquid vapor atx50 or
x51 to mixing demixing atx51/2. In the end point regime
which as said above was not observed in the present H
investigation, the critical lines are instead disconnected,
the transition along the line that connects the critical poi
of the pure species is essentially of liquid-vapor type. T
intermediate regime between these topologies is chara
ized by the presence of a further critical line at concent
tions ranging in a certain interval centered atx51/2, which
was referred to above as either the ‘‘crescent’’ or the ‘‘for
line. The number of critical points that are found for a certa
isothermal section of the phase diagram depends on the
tive location of the temperature extrema along the criti
lines. The behavior found by the present HRT calculat
agrees qualitatively with that given by mean-field theory.
particular, the system is predicted to have up to six criti
points at a certain temperature. According to HRT, this
curs for a very narrow range ofd values contained in the
6-16
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interval 0.665,d,0.68. At the boundary between the ‘‘cre
cent’’ and the ‘‘fork’’ topologies of the critical lines, the sys
tem has two tricritical points at symmetric nonequimo
concentrations besides that at concentrationx51/2. In HRT,
this particular topology occurs for a value ofd close to 0.67,
to be compared with the mean-field resultd50.653 38. In
both cases, these values lie very near the boundary betw
the two different types of one-phase ‘‘holes’’ in the pha
coexistence region described above. Whend is such that
mean-field theory and HRT predict the same qualitative
pology of the phase diagram, the quantitative discrepa
between the critical loci given by the two approaches is si
lar to that found for the pure species.

This investigation shows that symmetric mixtures, desp
their conceptual simplicity, exhibit a very rich phase beha
ior. Like real mixtures, these systems have both liquid-va
and mixing-demixing transitions. However, while in re
mixtures the liquid-vapor and the mixing-demixing regim
generally correspond to states that differ widely in dens
is

il-

m

.

r

ns

.
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and pressure, in symmetric mixtures these transitions
instead be located in the same region of the thermodyna
space. As a consequence, they tend to compete with
other, so that even a small variation in the relative strength
the interactions expressed by the parameterd is sufficient to
bring about significant qualitative changes in the phase
gram. The results presented here are also relevant for I
ferrofluids in the presence of a magnetic field. More gen
ally, they show that HRT is capable of providing a compr
hensive description and resolving even subtle features of
phase behavior of the model. This ability could prove use
to systematically study beyond the mean-field level also
phase diagram of more realistic, nonsymmetric model m
tures that depend one more than just one parameter.
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